Knowledge Base

REFERENCES FOR MATERIAL DATABASE CONTENT

Included in the Database

  • Automotive Steel Design Manual. Woodcliff Lake, New Jersey: American Iron and Steel Institute - Auto/Steel Partnership; 2002.
  • Barkey ME, Socie DF, Hsia KJ. A Yield Surface Approach to the Estimation of Notch Strains for Proportional and Nonproportional Cyclic Loading. J Eng Mater-T ASME 1994;116:173-180.
  • Bäumel, A., Seeger, T.: Materials data for cyclic loading – Supplement 1. Amsterdam: Elsevier; 1990.
  • Boller, C., Seeger, T.: Materials data for cyclic loading, Part A - Unalloyed steels, Elsevier, Amsterdam 1987.
  • Boller, C., Seeger, T.: Materials data for cyclic loading, Part B - Low-alloy steels, Elsevier, Amsterdam 1987.
  • Boller, C., Seeger, T.: Materials data for cyclic loading, Part C - High-alloy steels, Elsevier, Amsterdam 1987.
  • Boller, C., Seeger, T.: Materials data for cyclic loading, Part D, Elsevier, Amsterdam 1987.
  • Boller, C., Seeger, T.: Materials data for cyclic loading, Part E, Elsevier, Amsterdam 1987.
  • Boller C. Der Einfluss von Probengrösse und Oberflächenrauhigkeit auf Lebensdauerabschätzungen bei Betrachtung der örtlichen Beanspruchungen. Veröffentlichungen des Instituts für Stahlbau and Werkstoffmechanik, Heft 46. TH Darmstadt; 1988.
  • Brennan FP. The use of approximate strain-life fatigue crack initiation predictions. Int J Fatigue 1994;16:351-356.
  • Chen X, Gao Q, Sun XF. Damage analysis of low-cycle fatigue under non-proportional loading. Int J Fatigue 1994;16:221-225.
  • Choudhary BK, Bhanu Sankara Rao K, Mannan SL, Kashyap BP. Development of fatigue design curves for thick-section 9Cr-1Mo ferritic steel forgings. Int J Fatigue 1992;14(4):219-223.
  • Costa JD, Antunes JV, Silva VR, Ferreira JAM. Comparative analysis of fatigue life predictions in central notched specimens of Al-Mg-Si alloys. Fatigue Fract Eng M 2004;27(9):837-848.
  • Costa JD, Ferreira JAM. Fatigue crack initiation in notched specimens of 17Mn4 steel. Int J Fatigue 1993;15(6):501-507.
  • De Freitas M, Reis L, Li B. Evaluation of small crack growth models for notched specimen under axial/torsional fatigue loading. Facta Univ 2003;3(13):657-669.
  • Dowling NE. Mean Stress Effect in Stress-Life and Strain-Life Fatigue. Fatigue 2004: Second SAE Brasil International Conference on Fatigue. Sao Paulo: SAE; 2004.
  • Duprat D, Davy A, Boetsch R, Boudet R. Fatigue damage calculation in stress concentration fields under variable uniaxial stress. Int J Fatigue 1996;18(4):245-253.
  • Eleiche AM, Megahed MM, Abd-Allah NM. Low-cycle fatigue in rotating cantilever under bending II: Experimental investigation on smooth specimens. Int J Fatigue 1996;18(8):577-592.
  • Fang D, Berkovits A. Mean stress models for low-cycle fatigue of a nickel-base superalloy. Int J Fatigue, 16:429-437, 1994.
  • Farfan S, Rubio-Gonzalez C, Cervantes-Hernandez T, Mesmacque G. High cycle fatigue, low cycle fatigue and failure modes of a carburized steel. Int J Fatigue 2004;26:673-678.
  • Fatemi A, Zeng Z, Plaseied A. Fatigue behavior and life prediction of notched specimens made of QT and forged microalloyed steels. Int J Fatigue 2004;26:663-672.
  • Ferreira JAM, Borrego LFP, Costa JD. Shot peening effect on fatigue crack initiation of surface notches. Proc. of ICSP-9 Conference. Paris: IITT-International; 2005. pp 239-246.
  • Ferreira JAM, Costa JD, Reis L. Fatigue and creep in titanium grade 2. Int J Fatigue 1996;18(4):227-233.
  • Han C, Chen X, Kim KS. Evaluation of multiaxial fatigue criteria under irregular loading. Int J Fatigue 2002;24:913-922.
  • Hong N, Shaobo L. Biaxial stress fatigue life prediction by the local strain method. Int J Fatigue 1997;19(6):517-522.
  • Itoh T, Chen X, Hakagawa T, Sakane M. A Simple Model for Stable Cyclic Stress-Strain Relationship of Type 304 Stainless Steel Under Nonproportional Loading. J Eng Mater-T ASME 2000;122:1-9.
  • Jen Y-M, Wang W-W. Crack initiation life prediction for solid cylinders with transverse circular holes under in-phase and out-of-phase multiaxial loading. Int J Fatigue 2005;27:527-539.
  • Kim KS, Chen X, Han C, Lee HW. Estimation methods for fatigue properties of steels under axial and torsional loading. Int J Fatigue 2002;24:783-793.
  • Kluger K, Lagoda T. Application of the Dang-Van criterion for life determination under uniaxial random tension-compression with different mean values. Fatigue Fract Eng M 2004;27(6):505-512.
  • Lagoda T, Macha E, Kohút M, Karolczuk A, Nieslony A, Pawliczek R. Fatigue life of two steels under combined bending with torsion - an approach including non-local strain energy density parameter. Proceedings of the ECF 15 - Advanced Fracture Mechanics for
  • Lagoda T, Macha E. Estimated and experimental fatigue lives of 30CrNiMo8 steel under in- and out-of-phase combined bending and torsion with variable amplitudes. Fatigue Frac Eng M 1994;17(11):1307-1318.
  • Lee BL, Kim KS, Nam KM. Fatigue analysis under variable amplitude loading using an energy parameter. Int J Fatigue 2003;25:621-631.
  • McClaflin D, Fatemi A. Torsional deformation and fatigue of hardened steel including mean stress and stress gradient effects. Int J Fatigue 2004;26:773-784.
  • Nie H, Wu FM, Liu JF. A variable Kf-Neuber's rule for predicting fatigue crack initiation life. Fatigue Fract Eng M 1994;17(9):1015-1023.
  • Ong JH. An evaluation of existing methods for the prediction of axial fatigue life from tensile data. Int J Fatigue 1993;15(1):13-19.

Under Preparation

  • Landgraf RW. Cyclic deformation and fatigue behavior of hardened steels. T.&A.M. Report No.320, University of Illinois, Urbana, 1968.
  • Ong JH. An evaluation of existing methods for the prediction of axial fatigue life from tensile data. International Journal of Fatigue, 15 (1993) ; 13-19
  • Reis L, Li B, Freitas M. Biaxial fatigue for proportional and non-proportional loading paths. Fatigue & Fracture of Engineering Materials & Structures, 27 (2004) ; 775-784
  • Roessle ML, Fatemi A.Strain-controlled fatigue properties of steels and some simple approximations. International Journal of Fatigue, 22 (2000) ; 495-511
  • Thielen PN. Fatigue studies on 4140 quenched and tempered steel. Dissertation, Northwestern University, Evanston, 1975.

GENERAL REFERENCES

  • Basan R. Fatigue and damage of the gear tooth flank. Dissertation (in Croatian). Rijeka: Faculty of Engineering, University of Rijeka; 2009.
  • Basan R, Rubeša D, Franulović M, Križan B. A novel approach to the estimation of strain life fatigue parameters. Procedia Engineering 2010;2:417–426.
  • Basan R, Franulović M, Prebil I, Črnjarić-Žic N. Analysis of strain-life fatigue parameters and behaviour of different groups of metallic materials. Int J Fatigue 2011;33:484–491.
  • Basan R, Rubeša D, Franulović M, Marohnić T. Some considerations on the evaluation of methods for the estimation of fatigue parameters from monotonic properties. Procedia Eng., 2015, 101, 18–25. doi: 10.1016/j.proeng.2015.02.004
  • Jeon WS, Song JH. An expert system for estimation of fatigue properties of metallic materials. Int J Fatigue 2002;24:685–698.
  • Lee KS, Song JH. An expert system for estimation of fatigue properties from simple tensile data or hardness. J ASTM International 2009;6:1:1–15.
  • Manson SS. Fatigue: A complex subject – Some simple approximations. Exp Mech SESA 1965; 5, 7:193–226.
  • Marohnić T. Estimation of Cyclic and Fatigue Parameters of Steels Based on Their Monotonic Properties using artificial Neural Networks, (Ph.D. Thesis, in Croatian). Faculty of Engineering, University of Rijeka, 2017.
  • Marohnić T, Basan R, Franulović, M. Evaluation of Methods for Estimation of Cyclic Stress-Strain Parameters from Monotonic Properties of Steels. Metals, 2017, 7, 1–15. doi: 10.3390/met7010017
  • Marohnić T, Basan R. Study of Monotonic Properties' Relevance for Estimation of Cyclic Yield Stress and Ramberg- Osgood Parameters of Steels. J. Mater. Eng. Perform., 2016, 25, 4812–4823. doi: 10.1007/s11665-016-2311-1
  • Marohnić T, Basan R, Franulović M. Evaluation of the Possibility of Estimating Cyclic Stress-strain Parameters and Curves from Monotonic Properties of Steels. Procedia Eng., 2015, 101, 277–284. doi: 10.1016/j.proeng.2015.02.029
  • Marohnić, T. New insights into estimation of cyclic behaviour of steels based on their monotonic properties using artificial neural networks. Proceedings of the 5th Symposium on Structural Durability in Darmstadt / Vormwald, M., Beier, H. T., Breidenbach, K. (ur.). Darmstadt, Germany : Technische Universitat Darmstadt - Institut fur Stahlbau und Werkstoffmechanik, 2017. 223-230.
  • Meggiolaro MA, Castro JTP. Statistical evaluation of strain-life fatigue crack initiation predictions. Int J Fatigue 2004;26:463–476.
  • Muralidharan U, Manson SS. A modified universal slopes equation for estimation of fatigue characteristics of metals. J Engng Mater Techn 1988;110:55–58.
  • Ong JH. An improved technique for the prediction of axial fatigue life from tensile data. Int J Fatigue 1993;15:213–219.
  • Park JH. Song JH. Detailed evaluation of methods for estimation of fatigue properties. Int J Fatigue 1995;17:5:365–373.
  • Park JH, Song JH, Lee T. Lee KS. Implementation of expert system on estimation of fatigue properties from monotonic mechanical properties including hardness. Procedia Engineering 2010;2:1263–1272.
  • Roessle ML, Fatemi A. Strain-controlled fatigue properties of steels and some simple approximations. Int J Fatigue 2000;22:495–511.
  • Socie DF, Mitchell MR, Caulfield EM. Fundamentals of modern fatigue analysis – FCP Report. Urbana: University of Illinois; 1977.

Access the Database of Materials Properties

Compare Plans and Prices Free plan also available

Partners

Your Brand Here

  • Altair Engineering
  • Clarivate Analytics
  • IHS Markit
  • eFatigue
  • Dynomax
  • AITAC